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Abstract The Van Allen radiation belts surrounding the Earth are filled with MeV-energy electrons. This
region poses ionizing radiation risks for spacecraft that operate within it, including those in geostationary
orbit (GEO) andmedium Earth orbit. To provide alerts of electron flux enhancements, 16 prediction models of
the electron log-flux variation throughout the equatorial outer radiation belt as a function of the McIlwain
L parameter were developed using the multivariate autoregressive model and Kalman filter. Measurements
of omnidirectional 2.3MeV electron flux from the Van Allen Probes mission as well as>2MeV electrons from
the GOES 15 spacecraft were used as the predictors. Model explanatory parameters were selected from solar
wind parameters, the electron log-flux at GEO, and geomagnetic indices. For the innermost region of the
outer radiation belt, the electron flux is best predicted by using the Dst index as the sole input parameter. For
the central to outermost regions, at L≧ 4.8 and L≧ 5.6, the electron flux is predicted most accurately by
including also the solar wind velocity and then the dynamic pressure, respectively. The Dst index is the best
overall single parameter for predicting at 3≦ L≦ 6, while for the GEO flux prediction, the KP index is better
than Dst. A test calculation demonstrates that the model successfully predicts the timing and location of the
flux maximum as much as 2 days in advance and that the electron flux decreases faster with time at higher
L values, both model features consistent with the actually observed behavior.

1. Introduction

The radiation belts in the Earth’s inner magnetosphere are filled with relativistic electrons with energies from
hundreds of keV to a few MeV with fluxes that are highly variable. These energetic electrons are trapped by
the Earth’s magnetic field and bounce/drift around the Earth. Geostationary orbit (GEO; 36,000 km in altitude)
is located near the outer boundary of the outer radiation belt. GEO is extremely useful for terrestrial applica-
tions, and consequently, numerous satellites for telecommunications, broadcasting, and meteorological
purposes densely populate the orbit. The region of space below GEO and above Low Earth orbit (<2000 km
in altitude) is called Medium Earth orbit (MEO); MEO satellite passes through the central region of the outer
radiation belt and experience energetic particle damage during their passage through the intense electrons
in this region. Well-publicized examples of MEO satellites used for navigation include the American Global
Positioning System and European Galileo satellites at altitudes near 20,000 km, and the Japanese Quasi-Zenith
Satellite System at altitudes of approximately 32,000–39,000 km. The increased use of satellite constellations
in MEO as well as GEO results in increased potential risks to instruments and critical satellite systems owing to
radiation belt electrons.

Anomalies to instrument or subsystem operations of satellites in the radiation belt result often from an effect
known as deep dielectric charging. During such effects, internal electrostatic discharges can impact nearby
circuits owing to charge accumulation from energetic electrons that penetrate into dielectric materials after
passing through exterior materials of the spacecraft. The typical electron energy range required to produce
internal charging is 100 keV to 3MeV [Garrett and Whittlesey, 2012]. This energy range corresponds to the
radiation belt population. An empirical criterion for a spacecraft internal dielectric discharge is an accumu-
lated charge of 1010–1011 electrons per square centimeter over a 10 h period [Ferguson et al., 2011].

Because radiation belt electron flux varies substantially from geomagnetic response to changes in solar wind
conditions, spacecraft operators face significant challenges in any countermeasures against the effects of
penetrating electrons. These challenges are greatest during geomagnetic storms, when electron fluxes
rapidly vary in accordance with changes in the competing loss, transport, and acceleration processes.
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At GEO, the MeV-energy electron flux varies dramatically between 10 and 105 (cm�2 sr�1 s�1) over a few
days timescale of a typical storm. In such a space environment, satellite ground operators should avoid
sending critical commands to satellites that may be facing adverse internal discharging conditions in order
to prevent potentially catastrophic consequences to mission operations. Thus, the prediction of radiation
belt variations, particularly alerts of any flux enhancement before it reaches a threshold level for charging
conditions, is advantageous for ensuring satellite safety.

Many predictionmodels of the high-energy electron flux at GEO have been proposed, and results from some of
these prediction models are readily available via websites. One such early forecast model is the Relativistic
Electron Forecast Model (REFM), which is operated by the Space Weather Prediction Center (SWPC) at the
National Oceanic and Atmospheric Administration (NOAA). The REFM is based on the work of Baker et al.
[1990] and uses a linear prediction filter with solar wind speed as an input parameter. In addition, a research
group at the University of Colorado developed a means for providing quantitative relativistic electron forecasts
by solving the radial diffusion equation using empirical diffusion coefficients as functions of solar wind para-
meters [Li, 2004]. The model includes the “Dst effect” accounting for the adiabatic response of electrons due
to changes in the magnetic field. They have also provided forecasts based on the Turner and Li [2008] model,
called “low-E model,”, that is based on a simple source and loss differential equation which takes advantage
of a time delay between changes in low- and high-energy electron fluxes. A probabilistic forecast of MeV
electrons at GEO has also been provided by the Solar-Terrestrial Environment Laboratory at Nagoya
University in Japan. The forecast in their model was established by taking into consideration the solar wind
speed as well as the season and sector polarities of the interplanetary magnetic fields [Miyoshi and Kataoka,
2008a]. Furthermore, many additional attempts have been made to forecast high-energy electron flux at
GEO using a variety of techniques, including neural network models [Koons and Gorney, 1991; Ling et al.,
2010], a data-derived model for daily flux maxima [Ukhorskiy et al., 2004], and a liner prediction using Kalman
filters [Rigler et al., 2004]. The Japanese space weather information center at the National Institute of
Information and Communications Technology (NICT) [Nagatsuma, 2013] has been providing relativistic electron
flux prediction near GEO satellites since 2012 (http://seg-web.nict.go.jp/radi/en). Their prediction is based on a
multivariate autoregressive (AR) model that calculates future log-flux variations by accounting for a few days
lagging response of the electron flux to several solar wind parameter changes [Sakaguchi et al., 2013].

For MEO, the empirical AE-8 and AE-9 trapped electron models without any time dependence are available
[Vette, 1991; Ginet et al., 2013]. Because temporal and spatial coverage of observations at MEO are sparse
when compared to GEO, empirical approaches are limited. GEO models are more common also because
of the many highly valuable satellites at GEO. For nowcasting and forecasting energetic electron fluxes
throughout the outer radiation belt, several attempts by physics-based model have been made to calculate
the entire flux in the outer radiation belt. Fok et al. [2008] developed the Radiation Belt Environment model
to provide real-time nowcasting of the outer belt electron flux. The model is based on the bounce-averaged
Boltzmann transport equation taking into account the realistic, time-varying magnetic field and considers
effects of wave-particle interactions with whistler mode chorus waves. The space environment group at
the University of California, Los Angeles, has developed a 1MeV electron forecast diffusion-based model
using the data-assimilative Versatile Electron Radiation Belt (VERB) code [Subbotin et al., 2011] with the
forecast boundary flux obtained from the Geosynchronous Radiation-belt Electron Empirical Prediction
model. Similarly, Pakhotin et al. [2014] coupled the data-driven Nonlinear Autoregressive Moving Average with
eXogenous inputs model and the VERB code to simulate the outer radiation belt environment. The SPACECAST
project (www.fp7-spacecast.eu) [Horne et al., 2013] has developed two forecasting systems using a diffusion-
based formalism which are completely independent: one is the British Antarctic Survey radiation belt model
and the other is the Salammbo model developed at the Aerospace Research Laboratory (Office National
d’Etudes et de Recherche Aérospatiales), France [Beutier et al., 1995; Varotsou et al., 2005, 2008]. Despite all these
efforts at building physics-based predictive models, the dynamic variations throughout the radiation belt in the
Sun-Earth system nevertheless remain a substantial challenge for the space physics community. Consequently,
empirical approaches are practical and extremely useful, oftentimes providing better and more timely predic-
tions and forecasts than purely physical based numerical simulations.

In September 2012, the Van Allen Probes were launched into the inner magnetosphere to explore the radia-
tion belts in order to understand their dynamical nature. The data from this mission have been acquired since
launch for more than 2 years now. This long, continuous time series of data represents a new opportunity for
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developing improved empirical prediction models throughout the equatorial radiation belt at L=3–6 in MEO.
For example, the multivariate AR method used for GEO [Sakaguchi et al., 2013] can now be applied to predict
flux variations at each L value region in MEO.

In this article, we develop and present new prediction models for MeV electron flux variations throughout the
outer radiation belt based on Van Allen Probe measurements made during the maximum of Solar cycle 24. In
section 2, the multivariate AR model and Kalman filter are briefly introduced. In section 3, the data set of the
predictor and input driver parameters are explained. In section 4, cross-correlation functions between time
series of predictor and model driver candidates are shown. In section 5, estimation methods of AR coefficient
matrices are described. Lastly, prediction results are validated using skill scores in section 6 and summarized
in section 7.

2. Multivariate Autoregressive (AR) Model

The AR model is a representation of a time series in which the current value is modeled as a linear combina-
tion of its previous values. The multivariate AR model is a natural extension of the univariate AR model to a
multivariate time series vector. The multivariate model is suitable for explaining the interaction amongmulti-
ple time series, and thus, variations of radiation belt electron flux can be predicted on the basis of its correla-
tion with changes in other conditions. The details of the model are described in a previous paper [Sakaguchi
et al., 2013]. The formula for the representation is briefly introduced here.

Let us consider k time series variates {y1(t)}, …, {yk(t)}. A multivariate time series at time t is denoted by the
(1 × k) vector Y(t) = [y1(t), ⋯ yk(t)]

T. A predictor time series is set as y1 and explanatory (driver input) time
series are set as y2, …, k. The multivariate AR model with regression order m has the form

Y tð Þ ¼
Xm

n¼1
A nð ÞY t � nð Þ þ v; (1)

where A is the (k× k) coefficient matrix as a function of the regression order and v~N(0, W) is the (1 × k)
vector of Gaussian white noise, the mean vector and variance-covariance matrix of which are 0 and W,
respectively. The coefficient matrix A is determined by the least squares method using the householder
transformation [Akaike et al., 1979]. Here note that the AR model assumes the time series data to be normally
distributed around a zeromean. The MeV electron flux closely follows a lognormal distribution. Therefore, the
predictor time series consists of the common logarithmic values of the flux and all the observation data are
transformed into relative values by subtracting the sample mean of the time series, Y=Y�<Y>, where<>

is the sample mean over the past 60 days corresponding to roughly two solar rotations. The AR model can
predict the fluctuation component of the electron logarithmic flux, Δlog10(F).

The time evolutions of prediction values are estimated using the Kalman filter [Kalman, 1960] approach. A
Kalman filter is used to estimate the optimal mean vector and variance-covariance matrix of the current and
one-step-ahead states on the basis of the latest observation data. The state space representations of the multi-
variate AR model and the Kalman filtering and prediction equations are described in Sakaguchi et al. [2013].

3. Data Set
3.1. Predictor Time Series

Radiation belt electron flux data observed by the Relativistic Electron and Proton Telescope (REPT) [Baker
et al., 2012] of the Radiation Belt Storm Probes Energetic Particle, Composition, and Thermal Plasma Suite
(RBSP-ECT) [Spence et al., 2013] on the Van Allen Probe A satellite are used as the predictor time series for
modeling. The data obtained by only Probe A are enough because we use 1 day averaged data for the
analysis. There is no difference in models, which are generated by Probe A, Probe B, or Probe A+ B. The
Van Allen Probes were launched in August 2012 with low-inclination angles of about 10°. The apogee and
perigee are about 6 RE and 700 km, respectively, and the orbital period is about 9 h. The predictor time series
as a function of L values are generated by logarithmic daily-average calculations of omnidirectional electron
flux at the energy of 2.3MeV from the second lowest energy channel of REPT. McIlwain’s L values based on
the quiet external OP77Q [Olson and Pfitzer, 1977] and internal International Geomagnetic Reference Field
magnetic field models are used for the determination of the satellite position. The L time diagram of 2 year
observation data from September 2012 to August 2014 is shown in Figure 1e. Fifteen daily-average time
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series plots at L values between 3 and 6 withΔL=0.2 are shown in Figures 1b–1d. The log values of these time
series are used as predictors at MEO. The time series data from September 2012 to December 2013 are used
for the training of the models. Data in the remaining interval between January and August 2014 are used for
the model validation.

Figure 1. Time series plots and an L time diagram of the daily-average electron fluxes in the outer radiation belt from
September 2012 to August 2014. (a) The GOES 15 observation of >2MeV electrons at GEO. (b–d) The Van Allen Probe A
observation of 2.3 MeV electrons at L = 3–6 with ΔL = 0.2. (e) A L time diagram of 2.3MeV electrons observed by the
Van Allen Probes A.
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In addition, relativistic electron log-flux data at energies of>2MeV from the GOES 15 observation are used as
a predictor at GEO. Also, the GOES data are used as an explanatory parameter for the prediction of MEO flux
variations inside of the GOES location. Figure 1a shows the GOES 15 measurement of daily-average flux
variation for the same periods as the Van Allen Probe observations. The two horizontal dashed lines indicate
thresholds of electron flux warning levels defined by NICT, from quiet to high and extreme, from bottom to
top, respectively.

From the comparison between the time series data plots, it is clear that the characteristics of the variability
are different in each region. In particular, the fluctuation period becomes shorter as L increases. The timescale
of decay appears longer than that of growth at lower L values. Multivariate AR models are applied to each L
value region, and the best combinations of explanatory parameters for each are selected among the solar
wind parameters, geomagnetic indices, and GOES measurement data.

3.2. Explanatory Time Series

Geomagnetic indices and solar wind parameters are examined as candidate explanatory time series for
modeling. These data are obtained from the OMNI data set. Daily-average time series are generated for
the solar wind speed, VSW; the solar wind dynamic pressure, PSW; and the north-south component of the solar
wind magnetic field, BSW,Z, for the same period as the Van Allen Probe observations. These three time series
were used as explanatory parameters for the previous GEO prediction model [Sakaguchi et al., 2013]. In addi-
tion, five other daily-average time series, namely, the southward component of the solar windmagnetic field,
BSW,S (BS = –BZ at BZ< 0, BS = 0 at BZ> 0), the geomagnetic indices KP, Dst, and AE, and the GOES observations
of >2MeV electron log-flux, log10(FGEO), are newly examined in this study. We transform the KP index values
from their native format as stored in the OMNI data set of 0, 0+, 1�, 1, 1+, 2�,…, in the range from 0 to 9 into
a numerically tractable form such that KP = 0, 3, 7, 10, 13, 17,…, in the range from 0 to 90. The native KP index
values with plus and minus signs are mapped as 0+ to 3, 1� to 7, 1 to 10, 1+ to 13, 2� to 17, and so on. The
daily-average time series (including the transformed version of the KP index) from September 2012 to
December 2013 are plotted in Figure 2.

4. Cross-Correlation Analysis

Firstly, cross-correlation functions between the predictor and the eight explanatory candidates are investigated,
as shown in Figure 3. The cross-correlation functions between the radiation belt fluxes, log10(F) and the solar
wind parameters (a) VSW, (b) BZ, (c) BS, (d) PSW, and the geomagnetic indices (e) KP, (f) Dst, (g) AE, and (h) GEO
electron flux log10(FGEO) are plotted. The vertical axis is the correlation coefficient and the horizontal axis is
the number of lag days. Line colors indicate predictors at different L values: black lines for GEO and red, blue,
and green lines for L=5–6, L=4–5, and L=3–4, respectively. All of these cross-correlation functions show that
the correlations decrease with decreasing L values. In general, an explanatory time series that shows a high
cross correlation to the predictor improves the goodness of the model, and a longer time lag to the cross-
correlation peak results in the lead time extension of prediction. Thus, poor cross correlations indicate the
greater difficulty of modeling at lower L location than at higher L locations. The detailed interpretation of the
cross-correlation relations between the predictor and the explanatory time series are described below.

4.1. Solar Wind Speed: VSW

The solar wind speed is a parameter which is well known to be positively correlated with the relativistic elec-
tron log-flux variation at GEO [e.g., Paulikas and Blake, 1979]. In our study, the maximum cross-correlation
coefficient is calculated to be 0.57 with log10(FGEO) at the time delay of +2 days, indicating that variations
of the radiation belt electron flux at GEO statistically delays 2 days against changes of the solar wind speed.
With decreasing L values, the maximum coefficient decreases and the time delay increases; the maximum
coefficient (time delay) is calculated to be 0.51 (+2 days) at L=5.6, 0.37 (+3 days) at L=4.6, and 0.18 (+8 days)
at L= 3.6. This variation in the cross correlation with L values is similar to that in a previous study by Vassiliadis
et al. [2002].

4.2. Solar Wind Magnetic Field: BZ,SW, BS,SW

A southward solar wind magnetic field is considered a necessary condition for an increase in the relativistic
electron flux as well as a high solar wind speed [Miyoshi and Kataoka, 2008b]. The cross-correlation
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functions between the relativistic electron fluxes and BZ,SW show different shapes between GEO and the
other L regions. The minimum peak of the cross correlation at GEO is located at a time delay of +3 days,
while those at L< 5.8 are located at a time delay of +10 days. The negative correlation indicates an increase
in the radiation belt electron flux after the change in the magnetic field direction from northward to
southward. The minimum value among the peaks is found to be between log10(FL=4.6) and BZ,SW at a delay
time of +10 days.

In contrast to the broad shapes of the cross-correlation functions with BZ,SW, those with BS,SW show sharp
peaks at both negative and positive values. The negative maximum is found between log10(FL=5.8) and BS
at a time delay of ±0 day, while the positive maximum is found between log10(FL=5.6) and BS at a time delay
of +5 days. The positive peak values of the coefficients are larger than the absolute values of the negative
peaks. Such a shape of the function statistically indicates that a small depletion of electron flux occurs just
after BS increases, and then the flux gradually increases for 5 days.

Figure 2. Explanatory time series parameters: (top) solar wind speed VSW, north-south component of magnetic field BSW,Z,
and pressure PSW and (bottom) geomagnetic indices KP, Dst, and AE.
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4.3. Solar Wind Dynamic Pressure: PSW

The magnetopause shadowing process during solar wind pressure enhancements represents one extremely
prompt loss mechanism for relativistic electrons on open drift paths that encounter the magnetopause [e.g.,
Turner et al., 2012]. Some of the cross-correlation functions between the relativistic electron log-fluxes and
the solar wind dynamic pressure in Figure 3d show negative peaks at a time delay of ±0 day, indicating that
the depletion of flux occurs coincidently with the pressure increase. With increasing L values, negative values
of coefficient peaks increase while the peaks become unclear in the cross-correlation functions with electron
log-flux at L< 4 where the negative peak coefficients are low. This L dependence of cross-correlation rela-
tions with solar wind dynamic pressure shows a statistical boundary of loss processes (e.g., magnetopause
shadowing) during the analyzed period.

4.4. KP Index: KP

KP index represents the global activity level of the geomagnetic disturbance on the ground at subauroral
latitudes. KP index correlates with the strength of magnetospheric convection [Thomsen, 2004]. The first pre-
diction model of the relativistic electron log-flux at GEO was designed on the basis of daily sums of KP as
input data [Nagai, 1988]. In our study, the maximum cross-correlation coefficient is calculated to be 0.47 with
the log-flux at GEO at a time delay of +3 days, indicating that the radiation belt electron log-flux at GEO
statistically increases 3 days after KP increases. The maximum values of the cross-correlation coefficients
decrease with decreasing L values, while the corresponding delay times of the correlation peaks become
longer; +3 days at L=5.6, +4 days at L=4.6, and +9 days at L= 4.0.

4.5. Dst Index: Dst

Dst index represents the global activity level of a geomagnetic storm. The cross-correlation functions
between Dst and the relativistic electron log-fluxes show negative correlations in positive lag times. The
negative maximum correlation is calculated with the log-flux at GEO at time delays between +2 and +3days,
indicating that the electron flux at GEO statistically increases 2 or 3 days after Dst decreases. For the log-flux at
L=3.8–5.8, in the central region of the outer radiation belt, the cross-correlation functions show double nega-
tive peaks at time delays of a few days and about 10 days, which is similar to Figure 3e. The negative maxi-
mum correlation of the second peak is calculated with the log-flux at L= 4.6 at a time delay of +9 days.

Figure 3. Cross-correlation functions between predictor and explanatory parameters, i.e., radiation belt log-fluxes log10(F) and solar wind parameters (a) VSW, (b) BZ,
(c) BS, and (d) PSW and geomagnetic indices (e) KP, (f) Dst, (g) AE, and (h) GEO electron log-flux log10(FGEO). The vertical axis is the correlation coefficient, and the
horizontal axis is the number of lagging days. Line colors indicate the predictors at different L values: black lines for GEO and red, blue, and green lines for L = 5–6,
L = 4–5, and L = 3–4, respectively.
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4.6. AE Index: AE

AE index represents the geomagnetic disturbance at auroral latitudes. The cross-correlation functions
between AE index and the relativistic electron log-flux show a double positive peak at time delays of a few
days and about 10 days, which is similar to the correlation functions with KP and Dst. The maximum value
of the first peak is calculated with FGEO at a time delay of +3 days, indicating that the radiation belt electron
log-flux at GEO increases 3 days after AE increases. The maximum correlation of the second peaks is calcu-
lated with log10(FL=4.6) at a time delay of +10 days.

4.7. Electron Log-Flux at GEO: log10(FGEO)

The cross-correlation functions between the relativistic electron log-fluxes at GEO and each of the L value
regions show a fairly high correlation at the time delay of ±0 day. The highest coefficient is calculated to
be 0.89 with log-flux at the largest L value of 5.8, which is closest to GEO. With decreasing L values and longer
delay times, the correlation coefficient decreases.

5. Coefficient Matrix Estimation

The parameters of a multivariate AR model consist of an AR coefficient matrix and a white noise vector. The
dimension of the coefficient matrix corresponds to the number of inputting time series parameters. The num-
ber of AR coefficient matrices is proportional to the regression order,m. Increasing the number of parameters
(inputting time series parameters and regression orders) in models almost always improves the goodness of
fit. However, too many parameters generally result in poor predictive performance because the complexity
increases, which is called overfitting. To determine the best set of explanatory parameters and the regression
orderm of a multivariate AR model, the Akaike Information Criterion (AIC) minimization approach is used as a
measure of the relative quality between models [Akaike, 1974]. The AIC minimization method prevents such
overfittings of statistical models. The preferred model is determined by the one with the minimum AIC value.
The AIC equation is AIC =� 2(maximum log likelihood) + 2(number of parameters). The goodness of the fit
is evaluated by the maximum log likelihood and increasing number of parameters increases the penalty. The

maximum log likelihood of the AR model is given by – N�mmax
2 log2πW11 þ 1ð Þ [Akaike et al., 1979]. The

parameters in the first component of the k-variate AR model with the regression order m in equation (1)
are k×m AR coefficients and one white noise v. Then, AIC is given by

AICm ¼ N �mmaxð Þ log2πWm
11 þ 1

� � þ 2 k �mþ 1ð Þ; (2)

where N is the number of time series data points which is prepared for the modeling and mmax is the
maximum regression order to be examined. The first mmax data points in the time series are not used for
the modeling. The AIC for a multivariate AR model is calculated as a function of regression orders. The
optimum regression order for a model is the one that gives a minimum AIC value. The optimum explanatory
parameters are also estimated by comparisons of minimum AICs among different models.

Next, we use the AIC minimization method to identify the most important explanatory parameters: daily-
average MeV electron log-fluxes at L= 3.0, …, 5.8 and GEO. Figure 4 shows AIC curves of univariate and
two-variate AR models as a function of the regression order. The univariate model consists of a predictor
parameter only, and no explanatory parameter is used. The two-variate model consists of one predictor
parameter and one explanatory parameter: VSW, BZ, BS, PSW, KP, Dst, or AE. When the minimum AIC value of
a two-variate model is smaller than that of a univariate model, the explanatory parameter used in the
two-variate model is deemed to have effectively increased the accuracy of the prediction. Otherwise the
parameter in a two-variate model, which gives lager minimum AIC values than that of a univariate model,
is not considered to be an optimal explanatory parameter for the target predictor. In Figure 4, AIC curves
for models at (a) GEO (6.6 RE), (b) L= 5.6, (c) L= 4.6, and (d) L=3.6 are shown. Eight color lines indicate AIC
of two-variate models with VSW (red), BZ (yellow), BS (light green), PSW (green), KP (blue), Dst (purple), and
AE (pink), respectively. The gray lines indicate AIC of univariate AR models.

We examine AIC variations of AR models for the GEO electron log-flux prediction in Figure 4a. The mini-
mum AIC of the univariate model is calculated with a regression order of 26 days. The model predicts
its future variation from a self-recurrence period of approximately 27 days related to the solar rotation
cycle. Minimum AIC values of two-variate models with parameters BZ and BS have almost the same values
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as that of the univariate model, indicating that these are not particularly effective explanatory parameters.
Minimum AICs of the other two-variate models are sufficiently smaller than that of the univariate model.
In order of minimum AIC from smallest to largest, it is given by two-variate models with a parameter of
VSW, KP, AE, Dst, and PSW in turn. The order corresponds to the order of goodness as the explanatory
parameter. Similarly, for the modeling of electron log-flux at L= 5.6 shown in Figure 4b, Dst is evaluated
as the best explanatory parameters by minimum AIC comparisons. KP, AE, and VSW are also evaluated
to be effective explanatory parameters for improving the model goodness. The remaining two-variate
models give minimum AIC values smaller than that of the univariate model, which also possibly improve
the prediction performance. The AIC results for L = 4.6 shown in Figure 4c is almost the same as that for
L= 5.6. Lastly, for L = 3.6 shown in Figure 4d, Dst is evaluated as the best explanatory parameter; all other
parameters are not effective explanatory parameters. Because those minimum AIC values are larger than
that of the univariate model, examined parameters except for Dst do not improve the prediction perfor-
mance at L = 3.6.

Second, in order to select the best set of explanatory parameters, AIC curves of multivariate AR models are
investigated for all combinations of the explanatory parameters. In Figure 4, the curves, which have the smal-
lest AIC values for L=4.6 and 5.6 and GEO, are plotted as black lines. The optimum set of explanatory para-
meters and regression order are found to be (VSW, KP, and PSW) and 3 days for GEO, (VSW, Dst, and PSW) and
2 days for L= 5.6, (Dst and log(FGEO)) and 2 days for L=4.6, and (Dst) and 2 days for L=3.6, respectively.

Figure 4. AIC variations of two-variate AR models at (a) GEO (6.6 RE), (b) L = 5.6, (c) L = 4.6, and (d) L = 3.6 as a function of
regression order. Eight types of two-variate models are indicated by colored lines: VSW (red), BZ (yellow), BS (light green),
PSW (green), KP (blue), Dst (purple), and AE (pink). The gray lines indicate AIC variations of univariate AR models. The black
lines indicate the estimated final curves, which have the smallest AIC values.
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A summary of the explanatory para-
meter sets and regression orders
that give the minimum AIC is shown
in Table 1 for all L= 3–6 and GEO
models. The innermost parts of the
outer radiation belt at L= 3.0–4.0
are modeled by one explanatory
parameter of Dst with regression
orders of 5 days for L= 3.0–3.2, and
2 days for L= 3.6–4.0. The central
inner parts of the outer radiation
belt at L= 4.2–4.6 are modeled by
two explanatory parameters, Dst
and log10(FGEO) with a regression
order of 2 days. The central outer
parts of the outer radiation belt at
L= 4.8–5.2 are modeled by three
explanatory parameters, Dst, VSW,

and log10(FGEO), with a regression order of 2 days. The electron log-flux at L= 5.4 is modeled by two expla-
natory parameters, Dst and VSW, with a regression order of 8 days. The outer parts of the outer radiation belt
at L= 5.6–5.8 are modeled by three explanatory parameters, Dst, VSW, and PSW, with a regression order of
2 days. Lastly, the electron log-flux at GEO is modeled by three explanatory parameters, KP, VSW, and PSW
with a regression order of 2 days.

It is found that only one geomagnetic index is selected as an explanatory parameter for each model. This is
because any combination of the indices actually increases the AIC values, indicating directly from the
formalism that two or more indices as inputs cause an overfitting condition. Dst index is selected as an
explanatory parameter for all models at L= 3.0–5.8 except for the GEO model. In particular, the innermost
parts at L= 3.0–4.0 are modeled with Dst index only. AIC analyses indicate that Dst performs best at statisti-
cally predicting future log-flux levels for those L values.

The 2MeV electron log-flux at GEO is selected as an explanatory parameter for themodel at L= 4.2–5.2. This is
because, for AR models, an explanatory parameter, which shows a higher correlation at positive lag to a pre-
dictor, is preferable. That is to say that a high correlation is the necessary condition, but a positive time lag is
the sufficient condition for improving the goodness of a prediction model. It is indicated in Figure 3h that the
cross correlations between log10(FGEO) and log10(FL=3.0, …, 5.8) show higher correlations at larger L values, and
correlation peaks shift from 0 to positive lag days with decreasing L values. The log10(FGEO) parameter shows
correlation peaks at between 0 and +1 lag days for the log-fluxes at L= 4.2–5.2.

The VSW parameter is selected as an explanatory parameter for the models at L≧ 4.8. The correlations
(shown in Figure 3a) are sufficiently high at positive lag times. There is an evident boundary for VSW as
an explanatory parameter at L= 4.8. This might be related to some physical processes, such as the inner
edge of particle acceleration by ULF waves, a role of inward radial diffusion to lower L shells, the average
location of the plasmapause and the role of local acceleration by electrons interacting with whistler mode
chorus outside of the plasmasphere. ULF wave activity is known to be mostly related to VSW, while the
other conditions are related not only to VSW but also to BSW,Z which is a driver of magnetospheric
convection. The PSW parameter is selected as an explanatory parameter for the models at L ≧ 5.6. The
boundary of PSW at L = 5.6 also seems to be related to a physical process, perhaps in this case to MeV
electron loss owing to magnetopause shadowing. The limit at L = 5.6 probably corresponds to a statistical
threshold of electron losses due to magnetopause shadowing during the analyzed period from September
2012 to December 2013.

Lastly, and only for the model at GEO, KP is selected as an explanatory parameter instead of Dst. KP index
includes the middle to higher latitudes geomagnetic activity, such as a substorm activity, whereas the
Dst index is dominated by low-latitude geomagnetic disturbances caused in the inner magnetosphere
by the storm time ring current. In this study, it is found that the log-flux variations in the main body

Table 1. Summary of Estimated Best Set of Explanatory Parameters for Each
L Value and GEO Prediction Models

L Value Regression Order Explanation Parameter

L = 3.0 5 days Dst
L = 3.2 5 days Dst
L = 3.4 2 days Dst
L = 3.6 2 days Dst
L = 3.8 2 days Dst
L = 4.0 2 days Dst
L = 4.2 2 days Dst + log(FGEO)
L = 4.4 2 days Dst + log(FGEO)
L = 4.6 2 days Dst + log(FGEO)
L = 4.8 2 days Dst + VSW + log(FGEO)
L = 5.0 2 days Dst + VSW + log(FGEO)
L = 5.2 2 days Dst + VSW + log(FGEO)
L = 5.4 8 days Dst + VSW
L = 5.6 2 days Dst + VSW + PSW
L = 5.8 2 days Dst + VSW + PSW
GEO (6.6 RE) 3 days KP + VSW + PSW
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of the outer radiation belt are predicted well by Dst, while that at GEO, at the outer edge of the radiation
belt, is predicted well by KP. This is probably because Dst index corresponds to lower L value disturbance
and KP corresponds to middle/higher L value one by considering the latitudes of the contributing
ground stations. This may contribute to KP working better for higher L value than Dst. In addition, this
may be due to the L dependence of typical electron flux variations. For example, the KP index increases
when the global convection field increases [Thomsen, 2004], which in turn transports energetic particles
into the inner magnetosphere from the plasma sheet. On the other hand, the difference may also result
from the difference of energy ranges (and flux units) between observations made in MEO and GEO in
our study.

In a previous study [Sakaguchi et al., 2013], BZwas used as an explanatory parameter of the GEO fluxmodeling
because electron enhancements by both the seed electron transport and the acceleration by whistler waves
generally occur during a southward solar wind magnetic field condition. However, our present study sug-
gests that the flux of radiation belt electrons varies in relation to geomagnetic disturbances rather than
the magnetic field strength of the upstream solar wind. As an outcome of our work, the radiation belt elec-
tron flux forecast model of NICT for GEO will soon be updated and improved from the initial BZ-based model
to a newly demonstrated KP-based model.

6. Prediction Results and Validation

The time evolutions of MeV electron log-flux variation at each L value are calculated using a Kalman filter.
Figure 5 shows the predicted time series of electron flux (red line) for approximately 240days from 1 January
2014, which is after the interval used for the modeling. Lead time of prediction is 1 day, which means one-
step-ahead predictions. Pink lines at the top and bottom of the predicted values indicate themargin for 1 sigma
error, a standard deviation. Black dots indicate the actual observation values by the Van Allen Probe A. The
observation and prediction at (a) GEO, (b) L=5.6, (c) L=4.6, and (d) L=3.6 are overplotted in each panel.
Almost all the observation values are located within themargin of the prediction error. Some of the observation
values are located outside of the error margin. The blue and green lines indicate the differences in overestima-
tions and underestimations outside of the errormargin, respectively. Prediction failures aremostly found during
periods of rapid increase or decrease, such as around days 40 and 60. This could be from insufficient time reso-
lution (1day average) for predicting rapid evolution, or it may also be due to the lack of explanatory parameters
for a particular type of change. If such a change results from nonlinear evolution, a linear statistical model
cannot correctly predict the nonlinear effect owing to its very construction.

Figure 6 shows an example of long-term prediction over 10 days. The predictions more than one-step ahead
(n step) can be computed by n times iterations of the one-step prediction equation without filtering steps.
Details of n-step prediction methods are described in Sakaguchi et al. [2013]. The prediction calculation
shown in Figure 6 was done on the 131st day of year 2014, during a time of electron flux enhancements.
Observation data before 131 days are used for Kalman filtering calculations. Figure 6 (left) shows an L time
diagram for 2.3MeV electron flux observed by the Van Allen Probe A. Figure 6 (right) shows long-term
predictions; fluxes at days +1, +2, …, +10 correspond to 1, 2, …, 10 day ahead predictions. Data at the day
numbers of less than 0 are observations used as inputs for filtering calculations. The Kalman prediction
successfully reproduces that the outer radiation belt electron flux maximizes at day +2 at L= 4.6–5.0. The
long-term forecast can also predict that after the maximum the flux decreases with a higher decay rate at
higher L values, consistent with the actual observation.

The prediction results for 240 days in 2014 shown in Figure 5 are evaluated using two skill scores, which are
introduced in the website of NOAA/SWPC (legacy-www.swpc.noaa.gov/refm/doc/REFMDoc.html). The skill
score is a relative measure of prediction performance between the target and a reference forecast. It
evaluates whether the AR model performs better or worse than some reference models. The equation of
the skill score (SS) is given by SS = MSEtarget forecast � MSEreference forecast, where MSE is a mean square

error,MSE ¼ 1
N

XN
observed � forecastð Þ2. For MSE calculations, we used different two reference forecasts,

one is a sample mean value and the other is the most recent observation. The skill score based on a sample
mean value is called “prediction efficiency” and that based on the most recent observation is called “persis-
tence SS.” The persistence forecast assumes that the conditions at the time of the forecast will not change
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Figure 5. Comparisons of daily-average fluxes between 1 day ahead prediction (red line) and actual observation by the Van Allen Probe (black dots) at (a) GEO,
(b) L = 5.6, (c) L = 4.6, and (d) L = 3.6 for 240 days from 1 January 1. Pink lines above and below the predicted values indicate the margin of 1 sigma error. The blue
and green lines indicate the difference in overestimations and underestimations outside of the error margin, respectively.

Figure 6. Example of a long-term prediction over 9 days after day of year 131 in 2014. (left) An L time diagram for 2.3 MeV
electron daily-average log-flux observed by the Van Allen Probe A. (right) A long-term prediction. Data at the day numbers
of less than 0 are the observation values used as inputs for filtering calculations.
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and that future weather will be the same as the present. The prediction efficiency is calculated by inputting a
sample mean of the observation as a reference forecast:

Prediction efficiency ¼ 1�
X

i
yi � pið Þ2

X
i
yi� < y >ð Þ2 : (3)

Persistence SS is calculated by inputting the present observation value at the time of the forecast as a
reference forecast:

Persistence SS ¼ 1�
X

i
yi � pið Þ2

X
i
yi � ylatestð Þ2 ; (4)

where yi is the logarithmic value of the observed relativistic electron flux at time i and pi is that of the forecast
value. The skill score ranges from +1.0 (perfectly correct) to �∞ (not correct); positive and negative values,
respectively, indicate better and worse performances than the reference forecast. Figure 7 shows the (a) pre-
diction efficiency (PE) and (b) Persistence SS of prediction results for 240 days in 2014 as a function of the pre-
diction lead time.

The skill score of PE becomes +1 as the prediction error variance approaches zero, and conversely, the score
becomes negative when the error variance is larger than the observation variance. Figure 7a shows that the
skill score of PE decreases as the lead time becomes longer. The denominator of the second term of PE is the
variance of observation values, while the numerator is the variance of the prediction error. For GEO and
L=5.6, the scores are computed to be less than 0 after a lead time of 5 days. For L= 4.6, the score becomes
less than 0 after a lead time of 9 days. In terms of the PE examination, the forecast is evaluated as being useful
up to a lead time of 4 days for L≧ 5.6 and a lead time of 8 days for 5.6> L≧ 4.6.

The Persistence SS is calculated by inputting current observation values into the denominator of the second
term as the reference forecast, which indicates that today’s condition continues into the future. This is the
simplest prediction method, and it is suitable as a reference forecast for the validation. The Persistence SS
are greater than 0 for all L value models with lead times of 1 to 10 days except for L=3 at lead times of 1
to 3 days. This indicates that the AR predictions are valid in highly variable high L regions. On the other hand,
at L=3, Persistence SS at shorter lead times are poor since the MeV electron flux varies slowly.

7. Summary

Prediction models of the MeV electron flux variation in the equatorial outer radiation belt at L= 3–6 as well as
GEO are generated by the multivariate AR method. The daily-average flux of omnidirectional 2.3MeV elec-
trons from September 2012 to December 2013 obtained by the REPT on board the Van Allen Probe A is used
for the predictor time series at MEO along with GOES 15 data of >2MeV electrons at GEO. Sixteen multivari-
ate AR models are generated for each McIlwain L value between 3 and 6 (ΔL=0.2) and GEO. The AIC minimi-
zation procedure, which prevents overfitting, is used for the selection of explanatory parameters and
regression orders. Explanatory parameters are selected among four solar wind parameters (VSW, PSW, BSW,Z,
and BSW,S), three geomagnetic indices (AE, Dst, and KP), and GEO electron flux (log10(FGEO)). The middle to

Figure 7. Prediction validations by skill scores: (a) PE and (b) Persistence SS for 240 days in 2014 as a function of prediction lead time.
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inner parts of the outer radiation belt are modeled best with the Dst index (storm activity), while its outer
edge is modeled best with the KP index (substorm activity). The GEO log-flux is selected as an explanatory
parameter for electron log-flux modeling at 4.2≦ L≦ 5.2. The solar wind pressure and speed are selected
for the modeling at L≧ 5.6 and L≧ 4.8, respectively. The best combinations of explanatory time series and
the regression orders are summarized in Table 1. In this study, it is found that KP is a better explanatory para-
meter than BSW,Z for the modeling of electron flux at GEO. The NICT prediction model will be updated so as to
use KP as an input instead of BSW,Z.

The prediction results computed with the current model are validated on the basis of a 240 day data set
observed in 2014. Almost all the observation values are located within the margin of the prediction error
computed 1 day earlier. The prediction skill scores as a function of lead time are plotted in Figure 7. An exam-
ple of long-term prediction demonstrates that the model can predict the timing and location of the electron
flux maximum 2days earlier and the decay rate after the maximum.

For real-time operation of the MeV electron flux prediction using the multivariate AR model, current values of
electron fluxes at GEO and MEO as well as those of explanatory time series are needed as inputs to the
Kalman filtering calculation. The quasi-real-time GEO flux (log10(FGEO)) and the explanatory time series data
(Dst, KP, VSW, and PSW) are available. The next Japanese satellite Exploration of Energization and Radiation
in Geospace (ERG) mission [Miyoshi et al., 2012] plans to provide real-time observation data of the outer radia-
tion belt electrons in MEO for space weather users. The ERG satellite will be launched in the summer of 2016.
After the launch of the ERG satellite, real-time prediction of the MeV electron flux throughout the outer radia-
tion belt will be provided from the Japanese space weather information center of NICT.
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